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Anna Bogomolnaia, Hervé Moulin, Fedor Sandomirskiy, Elena Yanovskaya

November 26, 2017

Computation and Economics Seminar, HUJI

e-mail: fsandomirskiy@hse.ru

1

mailto:fsandomirskiy@hse.ru


Based on three papers with
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Motivation

Fair Division without monetary transfers:

how to allocate resources among agents with different preferences in a

fair and efficient way?

• Examples: division of a common property (partners dissolving their

partnership, divorce, inheritance), seats in overdemanded courses,

computational resources, office space

• Most of the results in fair division are about goods

• Exception: E. Peterson, F. Su. (2002, 2009), E. Segal-Halevi (2017)

burnt cake cutting

• But many real problems involve bads

• e.g., house chores, teaching loads, noxious facilities

• Or goods and bads at the same time
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In this talk

We consider:

• divisible items: bads or mixture of goods and bads (mixed manna)

• The goal: to extend the MaxNashProduct rule1 to mixed manna.

We will see:

• structural difference between goods and bads problems

• extension of MaxNashProduct is surprising

• algorithmic and economic open questions

1the best rule to allocate goods
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Outline

• Fair division of divisible goods (known results)

• MaxNashProduct and its properties

• MaxNashProduct as Competitive Equilibrium for a Fisher market

• Mixture of divisible goods and bads

• Competitive Equilibrium for mixed manna and extension of

MaxNashProduct rule

• All-bads problems with additive utilities

• Multiplicity issues

• Algorithms

• Indivisibilities
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Fair division of divisible goods
(known results)
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How it works on Spliddit.org?

Spliddit.org is launched by the team of Ariel Procaccia (Carnegie Mellon)
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Spliddit.org is launched by the team of Ariel Procaccia (Carnegie Mellon)

• It is assumed that agents have additive utilities
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How it works on Spliddit.org?

Spliddit.org is launched by the team of Ariel Procaccia (Carnegie Mellon)

• Spliddit.org uses the MaxNashProduct rule for indivisible items

• Let us look on a simpler divisible case
7



Divisible goods: the model

A fair division problem

• A set of divisible items M = {1, 2, ..m}, each in the unit amount, is

to be distributed among a set of agents N = {1, 2, 3.., n}
• zi = (zi1, zi2, zi3..) ∈ RM

+ is a bundle received by agent i

• an allocation z = (zi )i∈N is a collection of bundles zi ∈ RM
+ with the

condition that all goods are distributed: ∀a ∈ M
∑

i∈N zia = 1

• preferences of agent i are given by his utility functions ui

• We will focus on additive utilities

ui (zi ) =
∑
a∈M

uiazia
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Divisible goods: the model

A fair division problem

• A set of divisible items M = {1, 2, ..m}, each in the unit amount, is

to be distributed among a set of agents N = {1, 2, 3.., n}
• zi = (zi1, zi2, zi3..) ∈ RM

+ is a bundle received by agent i

• an allocation z = (zi )i∈N is a collection of bundles zi ∈ RM
+ with the

condition that all goods are distributed: ∀a ∈ M
∑

i∈N zia = 1

• preferences of agent i are given by his utility functions ui

• We will focus on additive utilities

ui (zi ) =
∑
a∈M

uiazia

Remark: Most of the results remain valid for general monotone,

homogeneous, and concave utilities, e.g., Leontief, CES, Cobb-Douglas,

etc
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Desired properties: Fairness and Efficiency

Envy-Freeness

z is envy-free iff every agent prefers his allocation to the allocation of

any other agent:

ui (zi ) ≥ ui (zj) for all i , j ∈ N.

Efficiency

z is efficient iff there is no z ′ weakly preferred by all agents and by at

least one strictly
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NashMaxProduct rule

picks an allocation z that maximizes the Nash Social Welfare

N (z) =
∏
i∈N

ui (zi )

a similar rule was introduced by J. Nash (1950) in axiomatic bargaining

Properties:

• Efficient

• Envy-Free

• Can be efficintly computed

• convex problem ⇒ approximate solution by gradient methods

• Vazirani (2006): exact solution in O(poly(|N|+ |M|))
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picks an allocation z that maximizes the Nash Social Welfare

N (z) =
∏
i∈N

ui (zi )

a similar rule was introduced by J. Nash (1950) in axiomatic bargaining

Properties:

• Efficient

• Envy-Free

Proof for |N| = 2 with additive utilities:

Consider an allocation x such that x1 = z1 + εz2 and x2 = (1− ε)z2.

The Nash product can only decrease: d
dεN (x)|ε=0 ≤ 0. By

additivity N (x) = (u1(z1) + εu1(z2))(1− ε)u2(z2), and inequality

implies u1(z1) ≥ u1(z2).

• Can be efficintly computed
• convex problem ⇒ approximate solution by gradient methods
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NashMaxProduct rule

picks an allocation z that maximizes the Nash Social Welfare

N (z) =
∏
i∈N

ui (zi )

a similar rule was introduced by J. Nash (1950) in axiomatic bargaining

Properties:

• Efficient

• Envy-Free

• Can be efficintly computed

• convex problem ⇒ approximate solution by gradient methods

• Vazirani (2006): exact solution in O(poly(|N|+ |M|))

There are many confirmations that the Nash rule is the best rule to

divide goods under additive utilities.

Let us try to guess what could be an extension to problems with bads.
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Why goods 6= bads? MaxNashProduct for bads, failed attempts

Bads instead of goods: uia ≤ 0 for all agents and items.

Ideas:

• Minimize the product of disutilities N (z) =
∏

i∈N |ui (zi )|
Very unfair: picks an allocation with N (z) = 0 that gives no bads to

one of agents

• Maximize the product of disutilities

Inefficient: is dominated by equal division zia = 1
|N|
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Why goods 6= bads? MaxNashProduct for bads, failed attempts

Bads instead of goods: uia ≤ 0 for all agents and items.

Ideas:

• Minimize the product of disutilities N (z) =
∏

i∈N |ui (zi )|
Very unfair: picks an allocation with N (z) = 0 that gives no bads to

one of agents

• Maximize the product of disutilities

Inefficient: is dominated by equal division zia = 1
|N|

To extend MaxNashProduct to bads we will use its connection with

Competitive Equilibrium for a Fisher market
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Back to goods: Fisher Market and its equilibrium

Fisher Market aka Arrow-Debreu exchange economy

• A set M of divisible goods

• A set N of buyers endowed with budgets bi and utility-functions ui .

Buyers have no value for money.

Allocation z is a Competitive Equilibrium if there is a vector p ∈ RM
+

of prices such that every agent buys the best bundle he/she can afford,

and the market clears. Formally,

∀i ∈ N : zi = argmaxy∈RM
+ :〈y ,p〉≤1ui (y).
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The Competitive Rule and the MaxNashProduct

The Competitive Rule (CR) (Varian 1974)

aka CEEI, pseudo-market mechanism

Picks a Competitive Equilibrium in a corresponding Fisher Market with

equal budgets: bi = 1 ∀i ∈ N.

Properties:

• envy-free ⇐= equal choice opportunities

• efficient ⇐= “invisible hand” of Adam Smith

Theorem (Eisenberg (1961), Gale (1960))

Competitive Rule = MaxNashProduct for general homogeneous

monotone concave preferences
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Why goods 6= bads? 2

Example:

• 4 agents divide 1 hour of a bad “washing the dishes”

• introduce auxiliary good: “not washing”

• 3 hours of “not washing” to distribute, but no agent can consume

more than one hour

Corollary: A problem with bads =⇒ a constrained problem with goods.
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Mixture of divisible goods and bads
(our results)
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The Competitive Rule for mixed manna

Mixture of goods and bads:

• additive utilities: uia of arbitrary sign

• or concave monotone homogeneous

How to define the Competitive Rule?

Allow prices and budgets of both signs.

Basic properties of CR:

• Existence ⇐ fixed point arguments from Mas-Colel (1982)

• Envy-Freeness & Efficiency (from standard arguments)

Question: Is it still related to the Nash Social Welfare?

16
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Relation to the Nash Social Welfare

Main theorem (CR and Nash Social Welfare for mixed manna)

A version of Eisenberg-Gale theorem still holds but now there are three

types of problems

• positive, negative, and null

with different behavior of the Competitive Rule.

• The theorem is for general concave homogeneous utilities and

arbitrary finite sets N and M.

• Illustration: additive utilities, 2 agents and 3 items.
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Relation to the Nash Social Welfare

Three items a, b, c , two agents with utilities given by

U1(z1) = −z1a − 3z1b + λz1c

U2(z2) = −2z2a − z2b + λz2c

Parameter λ ≥ 0. Items a, b are bads and c is a good.

18



Relation to the Nash Social Welfare

U1(z1) = −z1a − 3z1b + λz1c

U2(z2) = −2z2a − z2b + λz2c

Main theorem (CR and Nash Social Welfare for mixed manna)

• Positive problems: the set of feasible utilities intersects positive

orthant (λ = 4).

-1

Feasible set and competitive allocations
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2

-4 -3 -2 -1 1 2 3 4
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0

utility of agent 1

u
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f 
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t 
2

CR maximizes the Nash product (similar to all-goods case).

• Null problems: knife-edge case. CR picks zero.

• Negative problems:
18
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Relation to the Nash Social Welfare

Main theorem (CR and Nash Social Welfare for mixed manna)

• Positive problems: CR maximizes the Nash product

• Null problems: knife-edge case. CR picks zero.

• Negative problems: the set of feasible utilities doesn’t intersect

positive orthant (λ = 1).

1

Feasible set and competitive allocations
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CR picks all critical points of the Nash product on efficient frontier.

Critical point = local minima, local maxima or sadle-point of Nash

Social Welfare on the boundary.
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Relation to the Nash Social Welfare

Main theorem (CR and Nash Social Welfare for mixed manna)

• Positive problems: CR maximizes the Nash product

• Null problems: knife-edge case. CR picks zero.

• Negative problems: the set of feasible utilities doesn’t intersect

positive orthant CR picks all critical points of the Nash product on

efficient frontier.

Critical point = local minima, local maxima or saddle-point of Nash

Social Welfare on the boundary.

How to prove? Use an extension of demand-aggregation ideas for

homogeneous economies2.

2J. S. Chipman. 1974. Homothetic preferences and aggregation, Journal of Economic

Theory, 8, 26-38.
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Corollary

Analog of MaxNashProduct for all-bads problems

picks all the allocations corresponding to local minima, local maxima,

and saddle points of the Nash Social Welfare on the Pareto frontier

• Envy-Free and Efficient

• Does not solve any convex-optimization problem ⇒
• multiplicity issues

• algorithmic questions

19
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All-bads problems with additive
utilities

Multiplicity issues & Algorithms & Extension to indivisibilities

20



Multiplicity issues

Proposition (The number of CR outcomes)

The number of distinct competitive allocations can be as large as

2min{|M|,|N|} − 1, (exponential growth).

Open question: Any good single-valued selection?

A selection: MaxMinNashProduct rule

1. Min: restrict the Nash Social Welfare to the Pareto frontier

2. Max: output the allocation that maximizes the restricted product

Open problems: Normative justification? Better selectors?

21
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Impossibilities

Proposition

For all-bads problems no single-valued rule is:

• Efficient + Envy-Free + Continuous

• Efficient + Fair Share Guaranteed + Resource Monotonic

Remark: in all-goods problems MaxNashProduct satisfies all these

axioms. See Megiddo, Vazirani (2007) for Continuity; Segal-Halevi,

Sziklai (2015) for Resource Monotonicity.

Corollary:

• All-bads problems are structurally different from the all-goods

• No hope for good enough single-valued selectors

22
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Multiplicity becomes degenerate for large problems

• uia are i.i.d. random variables uniformly distributed on [− 1
m , 0].

Proposition

Two agents divide m bads, m→∞. Fix ε > 0. Utility vectors of all

competitive allocations are concentrated in ε-neighbourhood of(
− 1

3 ,−
1
3

)
with probability pm → 1.

Feasible set and competitive allocations

u
ti
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o
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en

t 
2

utility of agent 1

0

-0.2

-0.4

-0.6

-0.8

-1
0-0.2-0.4-0.6-0.8-1

Example with 15 bads.
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Algorithmic questions

Theorem (Vazirani (2006))

The outcome of the MaxNashProduct can be computed in

O (poly (|N|+ |M|))).

Question: Is this true for all-bads problem?

New features:

• critical points (local extrema and saddle points) on the boundary

instead of global extremum

• multiplicity

24



Computing all outcomes

Observation: if M and N are both large ⇒ no polynomial algorithm,

since the number of outcomes can be exponential

The case of |N| = 2

Pareto frontier has simple structure ⇒ simple polynomial algorithm.

• Rearrange bads in such a way that u1a
u2a

is increasing

• Then any Pareto allocation z has the form

z =

(
1 1 ... 1 x 0 0 ... 0

0 0 ... 0 1− x 1 1 ... 1

)

• For any allocation of this form we can check FOC of criticality

Corollary: there are most 2|M| − 1 outcomes

Conjecture

The same idea works for arbitrary fixed N: compute Pareto frontier and

check every face using FOC. 25
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Computing at least one outcome

Open question: When N and M are both large, can a particular

outcome of the Competitive Rule be computed in polynomial time (i.e., a

selection, e.g. MaxMinNashProduct)?
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Indivisibilities

For indivisible items the notion of envy-freeness should be relaxed to

guarantee existence.

Envy-Free−1 allocations for goods (Budish 2011)

Allocation z of indivisible items is Envy-Free−1 iff

∀i , j ∈ N ∃a ∈ zj : ui (zi ) ≥ ui (zj \ {a}).

Theorem (Caragiannis et al. (2016))

For goods, maximization of Nash Social Welfare over indivisible

allocations leads to Efficient Envy-Free−1 allocation.

Open question: Do Efficient Envy-Free−1 allocations exist for bads?
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Conclusions
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Concluding remarks:

• First results on mixed problem (goods + bads)

• All-bads problem differs from all-goods

• The MaxNashProduct rule can be extended to mixed problems; it is

still appealing but becomes multivalued for all-bads case

• Computing the outcome of MaxNashProduct for bads is no longer a

convex optimization problem

Future research:

• Algorithms

• Selectors

• Indivisibilities
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Thank you!
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