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▸ Classic results are about goods. But we often divide bads: 
▸ chores (dish-washing, cooking), tasks within organization (paperwork, 

teaching loads), liabilities

Goods / bads problems are surprisingly different! 

[Peterson, Su. (2002, 2009)],  [Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya 
(2017,2018)], [Segal-Halevi 2017]



PLAN FOR TODAY
▸ Known results: divisible items (goods or bads), additive utilities 

▸ Competitive Rule* = best mechanism for additive agents 

▸ goods: a convex optimization problem (Eisenberg- Gale) 

▸ bads: non-convexity, multiplicity   

▸ Computing all competitive allocations of bads in polynomial time for fixed n or m 

▸ Enumerating demand structures of all Pareto optimal allocations 

▸ Finding competitive allocation with given demand structure 

▸ Extensions: indivisibile bads, constrained economies

*aka Competitive Equilibrium with Equal Incomes (CEEI), Virtual Market Mechanism, Fisher Market 
equilibrium, or equilibrium of Arrow-Debreu exchange economy



KNOWN RESULTS 



▸ n agents, m divisible items*,           is the value of agent     for item 

▸ goods:                     bads: 

▸ utility of agent    for a bundle  

▸ allocation       is a collection of bundles                  with the condition 
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LIKE ON

Fairness (envy-freeness): Vi(zi) ≥ Vi(zk) ∀i, k ∈ [n]
Efficiency (Pareto optimality): there is no allocation      such that                                    
and   

DESIRED PROPERTIES

y Vi(yi) ≥ Vi(zi) ∀i
∃i Vi(yi) > Vi(zi) .
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DEFINITION 

An allocation        is competitive if there exists a vector of prices                         such that  

for any agent        his bundle          maximizes               on the budget constraint   

z p ∈ ℝm
−

i zi Vi(zi) ⟨p, zi⟩ ≤ − 1



PROPERTIES OF COMPETITIVE ALLOCATIONS
‣ Existence, envy-freeness, Pareto optimality (the First Welfare Theorem) 

‣ Link to Nash Social Welfare  
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Competitive allocations are 
critical points of NSW (local 
minima, local maxima, 
saddle points) on the Pareto 
frontier. Global extrema are 
not competitive.
[Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]

‣ approximate by gradient decent 
‣ exact by primal dual-schema 

‣ [Devanur, Papadimitriou, Saberi, Vazirani 2002],  
‣ [Orlin 2010], polynomial in n+m 

‣ Non-convex problem => many allocations 
with different utility profiles

[Eisenberg Gale (1959)]

‣ Convex problem => uniqness 
(in the space of utilities)

NSW is used as a potential to ensure finiteness of  
price-adjustment procedure. Relies on convexity! 



NEW RESULTS: COMPUTING 
COMPETITIVE ALLOCATIONS OF BADS 
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For fixed n or m 

‣ all competitive utility profiles 
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can be computed in strongly polynomial time* as a function of matrix of values   . 

*The number of elementary operations (addition, multiplication etc) is bounded by a polynomial of the free 
parameter (n or m); the memory used is bounded by polynomial of the input length. 
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IDEAS
Consumption graph            : bipartite graph on (agents—
bads), where i and j are connected if  

G(z)
zi,j > 0

OBSERVATION 
Finding a competitive allocation (if exists) for a given 
consumption graph       is easy*.G

*Intuition from constrained optimization: finding active constraints is hard, the rest is easy
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bads), where i and j are connected if  

G(z)
zi,j > 0

OBSERVATION 
Finding a competitive allocation (if exists) for a given 
consumption graph       is easy*.G

‣ Fixing        = fixing a face of the Pareto frontier 

‣ For a given face, FOCs of criticality of NSW give exact formula for                           
if there is a competitive allocation       with 

‣ For a given vector     , existence of competitive       can be checked using the 
auxiliary MaxFlow problem of [Devanur, Papadimitriou, Saberi, Vazirani 2002]

V = (Vi(zi))i∈[n]

G

G(z) = Gz
V z

*Intuition from constrained optimization: finding active constraints is hard, the rest is easy
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for       the set of all (n,m)-bipartite graphs {
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FINDING A RICH SET
The set EFFG of all efficient consumption graphs is polynomial and rich.
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▸ Corollary: any graph from EFFG can be obtained using the following procedure 

▸ pick an efficient consumption graph for each pair of agents:                                     possibilities 

▸ trace an edge between agent        and a bad        if this edge is traced in all 2-agent graphs with 

▸ fixed m, large n: use the duality (corollary of the 2nd Welfare Th):

FINDING A RICH SET
The set EFFG of all efficient consumption graphs is polynomial and rich.

Fix an efficient allocation      . For any pair of agents         their bundles           
can be completed to an efficient allocation of all bads between   
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EFFG is invariant w.r.t. to changing the roles of agents and items     
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COROLLARY
For fixed n or m, a Pareto-Optimal Envy—Free-(1,1) allocation of 
indivisible bads can be computed in strongly polynomial time.

First result on 
existence of approx 

fair allocation o bads 



CONSTRAINED ECONOMIES (OPEN PROBLEM)
economy with bads <=> constrained economy with goods: 

▸ For each chore          introduce an auxiliary good            , «not doing    »        

▸  n-1 units of        but each agent can consume at most 1 unit.             

[Bogomolnaia, Moulin, Sandomirskiy, Yanovskaya (2017)]
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‣ mixture of goods and bads 

‣ assignment problems [Hylland, Zeckhauser 1979]:   
‣ Complicated algorithm: [Alaei, Khalilabadi, Tardos 2017] 

▸ Upper and lower bounds on consumption of a subset of items

∑
j∈[m]

zij =
m
n



COMPUTING ONE COMPETITIVE ALLOCATION (OPEN PROBLEM)

Can we compute ONE competitive allocation of bads 
when n and m are both large, in polynomial time? 

 

If n and m are both large, no hope to compute ALL competitive 
allocations (may have exponential number of them even in the 
utility space)



COMPUTING ONE COMPETITIVE ALLOCATION (OPEN PROBLEM)

Can we compute ONE competitive allocation of bads 
when n and m are both large, in polynomial time? 

 

If n and m are both large, no hope to compute ALL competitive 
allocations (may have exponential number of them even in the 
utility space)

Thank you! (open) questions? (closing) remarks?
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