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SPL"TING LEM MA > Ziegler (2020), Levy, de Barreda, Razin (2020)
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PLAN FOR TODAY

»Characterisations of feasibility

»N=2: Agreement Theorem & Theorem of Dawid et al. (1995)
»Independent beliefs

»N>2: Characterisation via no-trade

»Bayesian Persuasion

»Optimal policies as extreme points of feasible distributions

»Example: inducing a conflict via Hilbert-space geometry.
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» Martingale Property

» Quantitative bound on disagreement

u(A x B)>
JAX[O,1]

p1du —
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A distribution is feasible €<= satisfies
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Let’s see this result in action
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» Can posteriors be independent?
»  R1's belief tells her nothing about the belief of R2

feasible?

Yes!

CRITERION OF FEASIBILITY FOR PRODUCT DISTRIBUTIONS

1
Measure §b on [0,1], symmetric around —.

2
¢ X ¢ is feasible <——> 2nd-order dominates the Uniform

_/

> s u.m.' feasible? NO! Let’s understand why
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IF IT WAS FEASIBLE WE COULD CONSTRUCT MONEY PUMP:

»Promise to transfer #(p;) euros to Receiver i if 0 = 1:

1, p;>2/3
1(p;) ={_1

p; < 1/3

Uniform

»Ask to pay her fair price E[#(p,) - p;] = her profitis O

AV

3 3 |
»Our profit mustalsobe () =[F Zpi H(p) = 1oy - Z t(p,)
=1 i=1 i

3 3
> [E Zpi - 1(p;) — max {O, 2 t(pl-)}
) =1 L=l
3 i 3 1
— J Z p; - t(p;) — max {0, 2 t(pi)} dp,dp,dp; = —7?17
[0,1]3 i=1 9

i=1

CONCLUSION uniform on [0,1]° is not feasible
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» Joint distribution of posteriors u € A(A(@) X ... X A(@)>
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PROOF »Necessity obvious

»Sufficiency the Farkas lemma (finite support),

Kellerer's theorem (1984) (general case)

REMARK »Theorem of Dawid etal. <= binary ®, N=2, t; = indicators

»For N>2, indicators are not enough

QUESTION »What is enough? Say, are combinations of N-1 indicators enough?
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Receivers:

Informed sender: A n
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THE GOAL
Maximize T [M(Pppz)]

over feasible distributions

J

» Optimal policies = extreme points of feasible distributions

» May have countable support : infinite number of signals

1 2|

» Contrast with N=1, where 2 signals are enough

M| b Kamenica, Gentzkow (2011)
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» We proved: any extreme point has 0-measure support
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pposterior = conditional expectation p, = E[1,_; | ;]
y& — E[E | F]is an orthogonal projection in L?
p{all orthogonal projections of £}=sphere of radius ||£||/2 centred at £/2

pexpress the quadratic objective through scalar products

»simple optimisation problem on the sphere

QUESTION Anything beyond quadratic objectives?
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»Open problems:
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THANK YOU!
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