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BIC IR mechanisms transport flows

e formal statement later

e left-hand side is intuitive = discuss the right-hand side
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Definition: 2nd-order stochastic dominance aka

U= V= /gdu > /gdu for any convex monotone g
Theorem (Daskalakis et al (2017))
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e non-local non-linear majorization constraint on gradient’s
distribution
¢ Ingredients:
e reduction: n-agent mechanism — 1l-agent reduced form
e characterization of feasible reduced forms via majorization:

m = 1 proved by Hart and Reny', equivalent to Border's theorem
1S.Hart, P.Reny (2015) Implementation of reduced form mechanisms ET Bulletin
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Multi-bidder extension of Rochet-Chone representation

optimal revenue = 1 - max / u(v)dy
convex monotone u JR

u(0) =0,

m
+

Beckmann: B, (7, ®) = min¢. giy[-fl4r=0 Jpm P(F(V)) - p(v)dv
+

Theorem (strong duality)

m .1
optimal revenue = n - min pr<7r, CD) 4F Z/ Ppi (z"fl) dz] ,
= Ju

Tz
@i on Ry s.t.
convex, monotone, ¢;(0) = 0

where ®(f) = >, i (Ifi]) and ¢} (y) = sup,(x,y) — @i(x)
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Question: How can it be that seller's problem admits two duals:
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Theorem (Santambrogio (2015))

By(m Il I1) = mn [y =i, )

positive measures ~y
with marginals 74, m—

Corollary: duality by Daskalakis et al. (2017)
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Applications

Strong duality = complementary slackness conditions

e allow to disprove optimality

e Example: For p(v) = p1(v1) - ... pm(Vm), selling separately is never
optimal?

1P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET


https://www.econstor.eu/bitstream/10419/94118/1/sfb-tr15-dp141.pdf
https://www.econstor.eu/bitstream/10419/74262/1/NDL2004-153.pdf

Applications

Strong duality = complementary slackness conditions

e allow to disprove optimality
e Example: For p(v) = p1(v1) - ... pm(Vm), selling separately is never
optimal?
e help to guess an explicit solution and to prove optimality
e Example: For n =1 and m = 2 i.i.d. uniform items, selling each for

% or both for 4*3‘5 is optimal?

1P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET
2A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET


https://www.econstor.eu/bitstream/10419/94118/1/sfb-tr15-dp141.pdf
https://www.econstor.eu/bitstream/10419/74262/1/NDL2004-153.pdf

Applications

Strong duality = complementary slackness conditions

e allow to disprove optimality
e Example: For p(v) = p1(v1) - ... pm(vm), selling separately is never
optimal?
e help to guess an explicit solution and to prove optimality
e Example: For n =1 and m = 2 i.i.d. uniform items, selling each for

2 or both for 4=v2 is optimal?

Question: Any hope for an explicit solution with n > 2 and m =2 i.i.d.
uniform items?

1P. Jehiel, M.Meyer-Ter-Vehn, B.Moldovanu (2007) Mixed bundling auctions JET
2A.Manelli, D.Vincent (2007) Multidimensional Mechanism Design JET


https://www.econstor.eu/bitstream/10419/94118/1/sfb-tr15-dp141.pdf
https://www.econstor.eu/bitstream/10419/74262/1/NDL2004-153.pdf

Applications

Strong duality = complementary slackness conditions
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2 or both for 4=v2 is optimal?
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Pictures for desse i d. uniform items

Probability to receive the first item as a function of bidder’s values

(v1, ) in the optimal auction (EEEETED):
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Complementary slackness conditions @esss

. . t . .
Optimal u°Pt, functions ¢, measure 7°P*, and vector field foP' satisfy:
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e Automated mechanism design: revenue maximization is an LP,
let's feed it to an LP solver; Sandholm (2003)
e Curse of dimensionality: If each of n agents can have g different
values for each of m items = the dimension ~ (g")"
e intractable for (m =2, ¢ =100 n = 2) or for (m =2 q =10 n = 4)
e deep neural networks improve the bounds; Dutting et al. (2019)
e How to avoid:

Rn.m(p) = max n~/]% u(v) dy(v)

convex monotone u i
u(0) =0, 9y u(v) < z"1
e Pros: dependence on n is killed; Cai et al.(2012), Alaei et al. (2019)
e Cons: non-linear program
e Linearization via transport:

e 4 on [0, 1] majorizes v if and only if there is v on [0, 1]* with
marginals p on y and v on x and such that [ ydy(y | x) > x for
~y-almost all x

e solve for (u,~)

e Performance: algorithm handles (m =2 g = 100 n = 10) 12



Revenue @EREEEstmeideas
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Revenue as a function of the number of bidders n for two items with i.i.d.
values uniform on [0, 1]. Graphs from bottom to top: selling separately
(light-green), selling optimally (blue), full surplus extraction (red), limit for
n — oo (the dashed line).
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Number of bidders
Revenue as a function of the number of bidders n for two items with i.i.d.
values uniform on [0, 1]. Graphs from bottom to top: selling separately
(light-green), selling optimally (blue), full surplus extraction (red), limit for
n — oo (the dashed line).

Remark: For n = 2, selling optimally improves upon selling separately
by 5%
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