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preferences and incomes — restrict aggregate demand?

How does observed aggregate demand restrict individual
characteristics?

> 100 papers since Sonnenschein (1973), two chapters in MWG...
D. Kreps (2020):
So what can we say about aggregate demand based on the hy-

pothesis that individuals are preference/utility maximizers? Un-
less we are able to make strong assumptions about the distri-
bution of preferences or income throughout the economy (e.g.,
everyone has the same preferences) there is little we can say.

The two extremes:
1. Sonnenschein-Mantel-Debreu theorem and related results

2. Gorman's representative consumer

e Our paper is a middle ground: a rich enough tractable setting
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Brings information economic tools to the classical problem

Key Contribution:
a method linking individual characteristics and market demand properties

e works for homothetic preferences (linear, Leontief, CES, etc)

Key Insights:
e utility functions NO, log(expenditure functions) YES
°
e a heterogeneous population ~ a single consumer \ °
whose log(expenditure function) = a weighted /.‘/
o AN
average of individual ones o °

e enables extreme-point and convexification tools
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Applications

Robust welfare analysis
e The same market demand can be generated by different populations

e Get a range of welfare levels for the equivalent variation

e We compute the range via Bayesian persuasion

Rationalizable aggregate behaviors
e Given a domain of individual preferences (e.g. linear,
Leontief), what aggregate behaviors can we get? gonv[D]

e Rationalizable behaviors ~ the convex hull in
log(expenditure)-space
Complexity of pseudo-market mechanisms
e Emulate market outcomes in non-monetary settings, e.g., charity
e We design bidding languages for efficient outcome computation

Identification of preference distributions

e Aggregate behavior pins down preference distributions for “simplex
domains” 4
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Single consumer’s choice

e n divisible goods
e a consumer with a preference 7 over R’} and budget b
e =~ is homothetic: x Zy < AxZ Ay, A>0

e and convex, continuous, monotone

7 <= concave utility v st. wu(a-x)=a-u(x)

demand as a function of prices p

D(p,b) = argmax u(x)

xE€RY : (p,x)<b
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e Consider a population of m consumers (Zk, bk)k=1,....m
e Total income B = )", b and Bk = by /B the relative income of k
Definition

Zager 1S the aggregate preference for this population if

Daggr (P, B) = Di1(p, b1) + ... + Di(p, bm)  for any price p

Eisenberg (1961), Eisenberg and Gale (1959):

e The aggregate preference exists
e Aggregate consumers’ utility < the Nash product maximization:

m

e (%, (i B)fr) = _max_ T (enue)) ™

m _
k=1 Xk=X Kke1

Challenging problem, no structural insights
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Aggregate consumer: a major simplification

e Aggregation is hard in the space of utilities = let’s try a dual space

e The expenditure function:

e Preferences <= logarithmic expenditure function (LEF): log E(p)

Theorem 1
LEF of the aggregate is the average of individual LEFs \~aqgr

log Eager (P, (ks Br)i1) Z»Bk log Ex(p) /7\

e The dual to Eisenberg-Gale

e A simple result with numerous implications
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Aggregate consumer: the geometric mean(ing)

e How to define the geometric mean of convex sets?
e The support function of a convex set X C R" is

hx(p) = min{p, x)

Definition (Boroczky et al. 2012, Milman and Rotem 2017)
Z = X*® Y12 is the convex set such that

z = |hx|® - [hy['™®

e E is the support function of the upper contour set
E(p) = mi)r(1<p,x>, X={xeR] : u(x)>1}
x€

Corollary
The upper contour set of the aggregate consumer is the geometric
mean of individual upper contour sets

Unger(X) > 1 u(x >161®u >162® - ® {um(x zlﬂk 9
g8
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Example: single-minded consumers

.

e Geometry: the geometric mean of the two orthogonal halfspaces is
the set above the hyperbola

e Algebra: o -logp; + (1 —a) - log po = log (p{ - p5~ %)

e Economics: two single-minded consumers generate the same

demand as one Cobb-Douglas consumer u(x) = x{* - x;

10



Robust welfare analysis

e An analyst observes market demand, aims to estimate a functional
depending on individual characteristics

W = W [(Z«, bk)k=1,...]

11



Robust welfare analysis

e An analyst observes market demand, aims to estimate a functional
depending on individual characteristics

W = W [(Zk, bk)k=1,..]

e Example: a change in welfare induced by a change in prices p — p’

11



Robust welfare analysis

e An analyst observes market demand, aims to estimate a functional
depending on individual characteristics
W = W[(Zk bi)k=1,..]
e Example: a change in welfare induced by a change in prices p — p’
e Representative consumer approach:

e postulate a representative, use her utility as proxy for welfare
e hence, market demand is a sufficient statistic

11



Robust welfare analysis

e An analyst observes market demand, aims to estimate a functional
depending on individual characteristics

W = W [(Zk, bi)k=1,..]
e Example: a change in welfare induced by a change in prices p — p’
e Representative consumer approach:
e postulate a representative, use her utility as proxy for welfare
e hence, market demand is a sufficient statistic

Observation

e The same market demand can be generated by different populations
o Compatible with a range of welfare levels [W, W]

11



Robust welfare analysis

e An analyst observes market demand, aims to estimate a functional
depending on individual characteristics

W = W [(Zk, bi)k=1,..]
e Example: a change in welfare induced by a change in prices p — p’
e Representative consumer approach:
e postulate a representative, use her utility as proxy for welfare
e hence, market demand is a sufficient statistic

Observation

e The same market demand can be generated by different populations
o Compatible with a range of welfare levels [W, W]

e Get a non-trivial range even for the equivalent variation (Wgy)

Wey = [the change in incomes equivalent to the change in prices]

11



Robust welfare analysis

e An analyst observes market demand, aims to estimate a functional
depending on individual characteristics

W = W [(Zk, bi)k=1,..]
e Example: a change in welfare induced by a change in prices p — p’
e Representative consumer approach:
e postulate a representative, use her utility as proxy for welfare
e hence, market demand is a sufficient statistic

Observation

e The same market demand can be generated by different populations
o Compatible with a range of welfare levels [W, W]

e Get a non-trivial range even for the equivalent variation (Wgy)

Wey = [the change in incomes equivalent to the change in prices]

11



Robust welfare analysis

e An analyst observes market demand, aims to estimate a functional
depending on individual characteristics

W = W [(Zk, bi)k=1,..]
e Example: a change in welfare induced by a change in prices p — p’
e Representative consumer approach:
e postulate a representative, use her utility as proxy for welfare
e hence, market demand is a sufficient statistic

Observation

e The same market demand can be generated by different populations
o Compatible with a range of welfare levels [W, W]

e Get a non-trivial range even for the equivalent variation (Wgy)

Wey = [the change in incomes equivalent to the change in prices]

11
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depending on individual characteristics

W = W [(Zk, bi)k=1,..]
e Example: a change in welfare induced by a change in prices p — p’
e Representative consumer approach:
e postulate a representative, use her utility as proxy for welfare
e hence, market demand is a sufficient statistic

Observation

e The same market demand can be generated by different populations
o Compatible with a range of welfare levels [W, W]

e Get a non-trivial range even for the equivalent variation (Wgy)

Wey = [the change in incomes equivalent to the change in prices]

“T(dw )
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Economic implications:

e EV is convex = representative-agent approach gives Wgy
e possible explanation for low gains from trade (Arkolakis et al., 2012)

e Wkey corresponds to the maximally diverse tastes

e can be computed explicitly when we know extreme points
e The range Wgy — WEy is of the order of ||p — p/||?

e second-order concern unless the price change is big
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Definition

the completion of D is the closure of the set of all preferences that can

be obtained by aggregation
e Cobb-Douglas = the completion of single-minded pref. wu;(x) = x;

Corollary of Theorem 1 Space of LEF:
the completion of D consists of all preferences COI‘)V[fD]
with LEF from the convex hull

conv {In E- :Z€ D}
e A domain is aggregation-invariant if any population behaves like a

single agent from the same domain
e The completion of D = the minimal invariant domain containing D 14
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InE = ZZ:l 6k -In Ek
e A recipe for invariant parametric domains
Linear preferences u(x) = (v,x) over n goods

e n = 2: the completion = domain of substitutes €=

e domain of substitutes < Dj(p) increases in p_; \\

e n > 3: extra constraints on demand’s
cross-derivatives (related to ARUM)

Leontief preferences u(x) = min; x;/v;

e The completion C all complements with a

complete-monotonicity constraint on the demand

Conclusion

Parameters are not aligned with aggregation = large completion 15
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Example (Budish et al. 2017):

How Wharton allocates seats in over-demanded courses?

e students submit preferences to a “black box” X _4PS/Ec172
CS/Ec149
e the box simulates an exchange economy with %k Ecil
equal endowments s/ Ec108
e the equilibrium allocation tells who gets what % i

Outstanding fairness and efficiency properties in a various settings
e Many applications: Ashlagi & Shi (2016), Bogomolnaia et al.
(2017), Devanur et al. (2018), Echenique et al. (2021), Conitzer et
al. (2022), Gao & Kroer (2022), Gul & Pesendorfer (2022)

Main criticism: computationally challenging

Our goal: find preference domains where easy to compute
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A basic exchange economy (aka Fisher market in algorithmic econ.):

e Consumers 71, ..., Zm with equal incomes by = ... = b, =b
e Fixed supply x € R |
Definition
(X1, --Xm, p) is an equilibrium if xx € Di(p, b) and x3 + ... xm = X
e Computing equilibrium is challenging even for linear preferences
e e.g., Devanur et al. (2002), Orlin (2010), Vegh (2012)
Theorem (informal)

e Complexity in D is lower-bounded by that in the completion

e For finitely-generated D, equilibrium can be computed efficiently

e The linear domain has large completion = hardness

Conclusion

Use finitely-generated D as bidding languages in large-scale applications 17
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e Aggregate behavior may be compatible with various populations
e What are domains D of individual preferences s.t. aggregate demand
is a sufficient statistic for preference distribution?
e Example: single-minded preferences uj(x) = x;, i=1,...,n
e A convex set is a simplex if each point can be represented as an
average of extreme points in a unique way

Corollary of Theorem 1

Aggregate behavior is a sufficient statistic for
preference distribution < D is the set of
extreme points of a simplex in the LEF space

Linear for n > 2 goods Leontief for n = 2 goods

Examples: \\\ LL
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Key takeaways

To handle aggregation, represent preferences by LEF

e All preferences ~ a compact convex set
e Aggregation ~ weighted average @
e Optimization over populations with given
aggregate behavior ~ Bayesian persuasion
e Domain completion ~ convex hull

e Domain completion reflects complexity of pS/EC172
CS/Ec149
Ecll

N Ec108
e Indecomposable preferences ~ extreme points R

equilibrium %

WA

This project C a broader agenda on connections between information
economics and economic design

Thank you!
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Example: indecomposable preferences over 2 goods
All homothetic Substitutes: D; T p_; Complements: D; | p_;

L gh

e Any aggregate preference of a population from D can be generated

by a population with indecomposable preferences <= Choquet theory
Conclusion

Indecomposable preferences are “elementary building blocks”
20
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o u(x)=vi X+ va-x, E(p) = min{p1/v1, p2/va}

e The completion = preferences s.t.

g E(p) = [  log (min {py/vs, pa/}) (1, v2)
R+
e What is the image of all probability measures under this integral
operator?

e Definition: goods are substitutes if D; is increasing in p_;

Proposition

The completion of linear over 2 goods = the domain of substitutes

e £ pins down y, i.e., the market demand is a sufficient statistic for
the distribution of linear preferences over the population
e Geometric meaning: the domain of substitutes is a “simplex” and

linear preferences are extreme points
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Corollary

e the completion= {: 3 ARUM U(w) = —log (E(e™,...,e™")}
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Example: Leontief preferences over 2 goods &=

e The domain of Leontief preferences over n = 2 goods

u(x) = min {x1/v1,x2/va},
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e The domain of Leontief preferences over n = 2 goods
u(x) = min {x1/v1,x/v2}, Ejp)=wvi-p1+va-p2

exhibit complementarity: D; is decreasing in p_;
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og E(p) = [ log (v pu + v pr) (. o)
R

T

e E is infinitely smooth = the completion # the complements domain
e Eg, u(xi,x2) =min{{/x1-x2, xi} is beyond
o Definition: S[v](\) = [, 1/(A+ z)dv(z) is the Stieltjes transform

Proposition

The completion is the set of preferences such that D;(\, 1) is the
Stieltjes transform of a positive measure v (the distribution on vo/vy).

e Remark: S is invertible (Stieltjes-Perron formula). Hence,

e market demand is sufficient to pin down preference distributions .



More Related Literature @&

e Endogenous incomes and general preferences = “anything
goes” for aggregate demand:

e Sonnenschein (1973), Mantel (1974, 1976), Debreu (1974),
Chiappori and Ekeland (1999), Kirman and Koch (1986),
Hildenbrand (2014)

e Representative agent approach

e Criticism of representative agents: Caselli & Ventura (2000),
Carroll (2000), Kirman (1992)

e Household behavior: Samuelson (1956), Chambers and Hayashi
(2018), Browning & Chiappori (1998)

e PIGLOG, AIDS, and similar functional forms

e Muellbauer (1975,1976), Deaton & Muellbauer (1980), Lewbel &
Pendakur (2009)
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For infinite domains, we need to allow “continual’ convex combinations

Theorem 3

The completion of D = preferences with expenditure functions E s.t.
og E(p) = | log Ex(p)du(x)
D
where 11 is a Borel probability measure supported on the closure D of D

e Closure and the Borel structure are w.r.t. thza distance )
(In E(p)—In E((1,...,1)))—(In E"(p)—In E’((1,...,1))
d(t’ r>\:/) = MaXpeA, (1+max; | In pi])?

e Preferences form a compact set ~ convex subset of C(A,_1)

e Choquet theory = Theorem 3
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