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‣   is hard: feasible distributions can be complexN ≥ 2
‣ Arieli, Babichenko, Sandomirskiy, Tamuz (2021), Brooks, Frankel, Kamenica (2022)
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MULTI-AGENT PERSUASION = OPTIMAL TRANSPORTATION PROBLEM!
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▸Interpretation: given spacial distribution of production and 
consumption, minimise the cost of transportation / maximise the utility

▸Remark: fractional maximal-weight matching 

▸Archetypal coupling problem, many econ applications:

▸ Daskalakis et al. (2017), Kleiner, Manelli (2019), Boerma et al. (2021), Chiapporiet et al. 
(2010), Galichon (2021), Steinerberger, Tsyvinski (2019), Gensbittel (2015), Guo, Shmaya 
(2021), Cieslak, Malamud, Schrimpf (2021)
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▸ simplification for particular classes of utilities

‣ one-state, supermodular, submodular

▸ tractable dual extending 1-receiver results:


‣  -theorem by Kamenica, Gentzkow (2011) and duality by Dworczak, Kolotilin (2017)cav[u]
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THANK YOU!


