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Computer boom and mechanism design

Rapid development of computers at the end of 90ies ⇒

• an opportunity to implement theoretically developed mechanisms

• complex auctions, large centralized markets (school choice, organ

transplants)

• need for new mechanisms

• sponsored search auctions, peer-review in MOOCs, online-markets,

ranking systems, procedures for sharing computation resources etc
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New methodology

The mechanism design became more practically-oriented. The main new

features:

• focus is on positive results. Non-existence of an ideal mechanism say

nothing for practice.

• importance of algorithmic and complexity issues: How hard it is for

agents to communicate the relevant information to a mechanism?

How hard is to compute the outcome?

Algorithmic questions are studied by Algorithmic Mechanism Design,

Algorithmic Game Theory, and Computational Social Choice
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Outline:

• Combinatorial auctions: the role of complexity

• Fair division of indivisible goods: how to overcome negative results?

4



Combinatorial auctions: the role of
complexity
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Combinatorial Auctions

CA = Auction with multiple goods

• a set A, |A| = m, of different indivisible goods is to be allocated via auction

to the set N of agents

• Agents are interested in bundles of goods. Valuation of agent i :

vi : 2A → R+

Question: How to organize such an auction?
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to the set N of agents

• Agents are interested in bundles of goods. Valuation of agent i :
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(vi (A1 ∪ A2) > vi (A1) + vi (A2) for some disjoint A1,A2 ⊂ A).

Example: A = {red sofa, red chair, green sofa, green chair}
If A′ contains {rs, rc} or {gs, gc}, then vAlice(A′) = 100, otherwise 0.

In independent auctions Alice may end up with a useless bundle but pay for it

(the so called exposure problem)

Corollary: independent auctions may produce unpredicted and inefficient

outcomes. Agents take these risks into account and post lower bids decreasing

the revenue of the seller.
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Famous real-world examples

• GSM spectrum auctions (beginning of 00s; many countries except

Russia :-( ):

• A 3 {“1100 MHz over North-west region”}, usually |A| > 1000

• bidders = telecommunication companies

• volume: hundreds of billions of dollars

• Different frequencies at the same region are substitutes; different

regions are complements

• Airport landing slots:

• A = opportunities to depart or land at a particular airport in a given

interval of time

• bidders = airlines

• departure opportunity without corresponding landing one has no

value
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The main two approaches to combinatorial auctions:

Simultaneous ascending auctions

• ascending auctions for every good are conducted at the same time

• agents learn some information about others’ preferences looking at their

previous bidding behavior ⇒ may estimate their chances of getting the

desired bundle and thus adapt the bidding strategy
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The main two approaches to combinatorial auctions:

Direct mechanisms (sealed-bid auctions)

• agents submit the profile of their valuations (vi )i∈N (their “bids”)

• a mechanism computes who gets what and how much pays
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The main two approaches to combinatorial auctions:

Direct mechanisms (sealed-bid auctions)

• agents submit the profile of their valuations (vi )i∈N (their “bids”)

• a mechanism computes who gets what and how much pays

Pros:

• Easy to guarantee efficient allocation (theoretically)

• No exposure problem: nobody will pay for useless bundle

Cons:

• Serious algorithmic obstacles (to be discussed)
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Examples of direct mechanisms

Extension of the first price auction:

• find a welfare maximizing allocation

A = (Ai )i∈N : SW =
∑
i∈N

vi (Ai )→ max

(the so-called winner-determination problem)

• give the bundle Ai to agent i

• his payment is pi = vi (Ai )

Compute the outcome of FPA:

A = {a, b, c , },N = {Alice,Bob,Claire}
Alice wants a and b together: vAlice(a, b) = 100, vAlice(a) = vAlice(b) = 0

Bob needs a only: vBob(a) = vBob(a, b) = 75, vBob(b) = 0

Claire needs b only: vClaire(b) = vClaire(a, b) = 40, vClaire(b) = 0

Remark: as in one-good FPA nobody will submit his truthful valuation

⇒ mechanism is manipulable and resulting allocation may be inefficient.

Also there is no explicit description of equilibrium bidding strategies and

no RET.
10
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Examples of direct mechanisms

Extension of the second-price auction (VCG mechanism):

• find a welfare maximizing allocation

A = (Ai )i∈N : SW =
∑
i∈N

vi (Ai )→ max

• give the bundle Ai to agent i

• his payment is pi = SW−i (A)− SW ∗−i , where

SW−i (A) =
∑

i∈N\{i} vi (Ai ) and SW ∗−i is the maximal value of

SW−i over all allocations.

Compute the outcome of VCG:

A = {a, b, c , },N = {Alice,Bob,Claire}
Alice wants a and b together: vAlice(a, b) = 100, vAlice(a) = vAlice(b) = 0

Bob needs a only: vBob(a) = vBob(a, b) = 75, vBob(b) = 0

Claire needs b only: vClaire(b) = vClaire(a, b) = 40, vClaire(b) = 0

Remark: truthful report is the dominant strategy ⇒ always get efficient

allocation.
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Algorithmic issues with direct
mechanisms

12



Difficulty 1: complexity of preferences

For general valuation functions, to report vi agent i should specify 2|A|

numbers (vi (A
′) for any A′ ⊂ A), i.e., the report has exponential size.

Example: For 20 goods, there are more than one million numbers.

Corollary: For practice the class of possible reports should be restricted.

This is a problem of choosing an appropriate bidding language, the class

of reports that are

• expressive: rich enough to express the relevant

complementarity/substitutability

• concise: the report is not too long

• easy to handle: both by humans and machines
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Examples of bidding languages

use the language of propositional logic.

• Atomic language (for single-minded agents):

{laptop, mouse} : 100 means vi (A
′) = 100 if A′ contains laptop and

mouse and 0, otherwise

• OR language (non-exclusive disjunction of atomic bids)

{laptop, mouse} : 100 OR {smartphone} : 50 OR {smartphone,

headphones} : 60 means:

vi (laptop,mouse) = 100

vi (laptop,mouse, smartphone) = 150

vi (laptop,mouse, smartphone, headphones) = 160 etc
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vi (A1 ∪ A2) > vi (A1) + Vi (A2) for all disjoint A1,A2 ⊂ A (i.e.,
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′) = 100 if A′ contains laptop and

mouse and 0, otherwise

• OR language (non-exclusive disjunction of atomic bids)

{laptop, mouse} : 100 OR {smartphone} : 50 OR {smartphone,

headphones} : 60 means:

vi (laptop,mouse) = 100

vi (laptop,mouse, smartphone) = 150

vi (laptop,mouse, smartphone, headphones) = 160 etc

Theorem: OR language can express any valuation such that

vi (A1 ∪ A2) > vi (A1) + Vi (A2) for all disjoint A1,A2 ⊂ A (i.e.,

without substitutability)

Remark: to handle substitutability add XOR (exclusive disjunction),

which allows to express that agent i is ready to buy bundle B or

bundle C but not both.
14



Difficulty 2: complexity of finding an efficient allocation

Bad news

Even for restricted classes of valuations (like OR) the winner

determination problem

A = (Ai )i∈N : SW =
∑
i∈N

vi (Ai )→ max
is NP-hard.

Remark: For practice this means that there is no algorithm for

computing the Pareto-optimal allocation A that is much more efficient

than comparing all possible partitions of A (there are exponentially many

of them).

Corollary: Hence for |A| = 25 even modern supercomputers will fail to

find A ⇒ efficient algorithms for computing approximately

Pareto-optimal allocations are used.

Side remark/exercise: for n men and m women the Deferred

acceptance algorithm allows to compute a stable matching in polynomial

number of operations (check!). This allows to use this algorithm for large

problems (school choice, job markets) with many agents. 15
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Fair division of indivisible goods: how
to overcome negative results?
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Fair division of indivisible private goods

The model

• A set of indivisible goods A is to be allocated to agents, N, without

money transfers

• Allocation A = (Ai )i∈N is a disjoint partition of A

• Utilities are additive: ui (Ai ) =
∑

a∈Ai
uia

Question: What kind of fairness properties can we guarantee?

Remark: Using a richer bidding language is a good idea but, for now,

nothing is known about fairness in such a setup.
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Fairness notions from the divisible case

• Envy-free allocation: ui (Ai ) ≥ ui (Aj) ∀i , j
• Fair Share Guaranteed allocation: ui (Ai ) ≥ ui (A)

|N| ∀i

Bad news: such allocations may fail to exist. Guess the example!
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Fairness notions from the divisible case

• Envy-free allocation: ui (Ai ) ≥ ui (Aj) ∀i , j
• Fair Share Guaranteed allocation: ui (Ai ) ≥ ui (A)

|N| ∀i

Bad news: such allocations may fail to exist. Guess the example!

Example: two agents and two goods a, b, where a is more desirable for

both agents.
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Two ways to escape non-existence results:

• Looking at the properties for a “typical” profile of preferences (either

random or generated by real users)

• Finding an appropriate relaxation of fairness notion that guarantees

existence.

19
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• Looking at the properties for a “typical” profile of preferences (either

random or generated by real users)

Theorem (Dickerson et al 2014)1

If the number of goods is large and uia are independent identically

distributed random variables, then E-F (and thus FSG) allocations exist

with high probability

• Finding an appropriate relaxation of fairness notion that guarantees

existence.

1The Computational Rise and Fall of Fairness. John P. Dickerson, Jonathan

Goldman, Jeremy Karp, Ariel D. Procaccia, and Tuomas Sandholm. AAAI-14: Proc.

28th AAAI Conference on Artificial Intelligence, pp. 1405-1411, Jul 2014.

http://procaccia.info/papers/ef_phase.aaai14.pdf
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If the number of goods is large and uia are independent identically

distributed random variables, then E-F (and thus FSG) allocations exist

with high probability

• Finding an appropriate relaxation of fairness notion that

guarantees existence. We will look at two examples

1The Computational Rise and Fall of Fairness. John P. Dickerson, Jonathan

Goldman, Jeremy Karp, Ariel D. Procaccia, and Tuomas Sandholm. AAAI-14: Proc.

28th AAAI Conference on Artificial Intelligence, pp. 1405-1411, Jul 2014.

http://procaccia.info/papers/ef_phase.aaai14.pdf
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Maximin share (MMS)

A natural modification of FSG (Budish, 2011)2:

• the Maximin share of agent i is

MMSi = max
A

min
j

ui (Aj).

• an allocation is MMS if for any i

ui (Ai ) ≥ MMSi .

Exercise: find MMSi and an MMS allocation for the following problem

a b c

uAlice : 60 20 20

uBob : 55 25 20

2BUDISH, E. 2011. The combinatorial assignment problem: Approximate competitive

equilibrium from equal incomes. Journal of Political Economy 119, 6, 1061–1103.
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Existence of MMS allocations

For several years it was conjectured that MMS allocations always exist:

• computerized search for a counterexample on supercomputers failed

• MMS allocations exist for all preference profiles from Spliddit

But. . .
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Theorem (Procaccia & Wang, 2014)3:

For |N| ≥ 3 agents MMS allocation may fail to exists (a knife-edge

counterexample with 12 goods). But 2
3MMSi can always be guaranteed

and there is a polynomial algorithm for computing such an allocation.

3Fair Enough: Guaranteeing Approximate Maximin Shares. David Kurokawa, Ariel D.

Procaccia, and Junxing Wang. Journal of the ACM (forthcoming).
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EF-1

Envy-freeness up to one item4

an allocation A is envy-free up to one item if for all i and j

ui (Ai ) ≥ ui (Aj \ {aij})
for some aij ∈ Aj .

Easy Proposition:

EF-1 allocations always exist.

Sketch of the proof: Order agents somehow and consider a round-robin

mechanism (serial dictatorship with non-unit demand):

• agents 1, ..n sequentially come and pick the most desired good

• repeat until all goods are allocated

Check that this procedure leads to EF-1 allocation.
4LIPTON, R. J., MARKAKIS, E., MOSSEL, E., AND SABERI, A. 2004. On

approximately fair allocations of indivisible goods. In Proceedings of the 6th ACM

Conference on Economics and Computation (EC). 125– 131.
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Efficient EF-1 allocations

Theorem (Caragianis et al 2016)5:

An allocation maximizing the Nash product
∏

i∈N ui (Ai ) is Efficient and

EF-1.

Corollary: the Nash rule provides fair and efficient solutions both in

divisible and indivisible cases. For indivisibilities, its relation to

market-equilibrium is an open question.

Bad news: maximization of the Nash product is NP-hard for indivisible

items ⇒ many papers on polynomial approximation algorithms

Good news: if it is known that uia belong to a fixed lattice (e.g.,

1...1000 points), there is a polynomial algorithm to compute the exact

solution. It is now used on Spliddit.
5The Unreasonable Fairness of Maximum Nash Welfare. Ioannis Caragiannis, David

Kurokawa, Herve Moulin, Ariel D. Procaccia, Nisarg Shah, and Junxing Wang. EC-16:

Proc. 17th ACM Conference on Economics and Computation, pp. 305-322, Jul 2016.

http://procaccia.info/papers/mnw.pdf
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Main take-away points:

Importance of complexity:

• Agents cannot report too much information and the outcome of a

mechanism cannot be found without fast algorithm

• If there is no fast algorithm, various approximation methods are used

Ways to avoid non-existence of mechanisms with nice properties

• Mechanisms may behave badly for some knife-edge cases that never

occur in practice and have nice properties for all real-life preference

profiles

• The definition of “what is nice” may be weakened a bit to guarantee

existence
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