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Economic design & the computer revolution

The problem of Economic Design: How to design the rules of

interaction to achieve the desired outcome?

The time-line:

• before mid-nineties: theoretical area at the interface of GT and

Microeconomics

• since mid-nineties: computers and the Internet ⇒ practical

implementation of theor results

• 1990s: Auctions

• 2000s: Large centralized markets (job markets, school choice,

transplants)

• 2010s: Fair Division and other mechanisms on micro-level (dividing

the rent, peer grading, computational resources etc.)

Real-world implementation ⇒ new problems ⇒ new research areas

Algorithmic Game Theory and Computational Social Choice
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The difficulties of the classical approach

• The classical approach often leads to impossibility results. Famous

examples:

Arrow’s impossibility & the Gibbard-Satterthwaite impossibility

theorems

• Algo GT focuses on positive results. Tools for avoiding

impossibilities:

• average-case instead of the worst-case

• approximate requirements

• quantitative analysis instead of qualitative (if the requirement is

violated, quantify by how much)

• The classical approach assumes that agents can formulate and

report very complex preferences. Example:

• general preferences on bundles of 20 indivisible goods ⇔ list with

more than 1000000 items.

• Algo GT: complexity issues are important

• agents have bounded cognitive abilities ⇒ importance of simple

preference domains

• the outcome of a mechanism has to be efficiently computable
3
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Today

We will illustrate the interplay of the classic and modern approaches to

Fair Division mechanisms without monetary transfers.

• Examples: division of a common property (partners dissolving their

partnership, divorce, inheritance), charity, seats in overdemanded

courses, resources within the firm (office space, IT facilities,

bonuses), computational resources in a network, bandwidth among

mobile phones

Let’s look how it works on Spliddit.org, an online fair-division platform

launched by the team of Ariel Procaccia (Carnegie Mellon University)

4
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Fair division of private goods on Spliddit.org
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Fair division of private goods on Spliddit.org

• Each agent redistributes 1000 points among goods, and these

reported values reflect “importance” of a good to an agent.
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Fair division of private goods on Spliddit.org

• This mechanism assumes that goods are indivisible and will be

described in the next lecture of Vasilis Gkatzelis. We consider a

simpler case of divisible items. 5



Outline:

Lecture 1. Divisible items

• Fairness. Mathematicians cut a cake

• Fairness & Efficiency. Microeconomists divide divisible private goods

• Examples: Utilitarian, Egalitarian, and the Nash rule

• The Competitive Approach

• Relation to the Nash Rule

• What if we divide bads, not goods? 1

Lecture 2 (Vasilis Gkatzelis). Strategic issues & Indivisible items

1based on joint papers with Anna Bogomolnaia, Hervé Moulin, Elena Yanovskaya

“Competitive division of a mixed manna”, Econometrica. 2017. V.85:6. P.1847-1871

“Dividing goods or bads under additive utilities”, SocChoice&Welfare . 2018. P. 1-23

“Dividing goods and bads under additive utilities” arXiv:1610.03745 [cs.GT]
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Fairness. Mathematicians cut a
cake
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Cake-cutting problem

The first rigorous result on Fair Division:

Steinhaus, H. (1948). The problem of fair division. Econometrica, 16,

101-104.

The problem:

• A divisible non-homogeneous resource G = [0, 1] (land, CPU time,

pizza with different toppings) is to be divided among a finite set of

agents N = {1, 2..n}
• Agent i has a utility function ui on subsets of G . It is

• additive (ui (B ∪ B ′) = ui (B) + ui (B
′) for B ∩ B ′ = ∅)

• normalized ui (G) = 1

• non-atomic ui ({x}) = 0 ∀x ∈ G .

• The goal: find a “fair” division of the cake: G = G1 t G2 t ..Gn
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A well-known protocol

“Cut and chose”

Two agents. Agent 1 cuts a cake into two pieces B,B ′, equal from his

point of view: u1(B) = u1(B ′). Agent 2 takes the most preferred piece,

agent 1 gets the remaining.

In what sense is it fair?

9



Fairness. The two dominant criteria:

Envy-Freeness

Every agent prefers his allocation to the allocation of any other agent:

ui (Gi ) ≥ ui (Gj) for all i , j ∈ N.

Fair Share Guaranteed (aka Proportionality or Equal Division

Lower Bound)

Every agent prefers his allocation the “equal division”:

ui (Gi ) ≥ 1/|N|

What is stronger, E-F or FSG?
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Fairness. The two dominant criteria:

Envy-Freeness

Every agent prefers his allocation to the allocation of any other agent:

ui (Gi ) ≥ ui (Gj) for all i , j ∈ N.

Fair Share Guaranteed (aka Proportionality or Equal Division

Lower Bound)

Every agent prefers his allocation the “equal division”:

ui (Gi ) ≥ 1/|N|

What is stronger, E-F or FSG? For |N| ≥ 2 E-F implies FSG. For

|N| = 2 E-F ⇔ FSG.
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Evolution of cake-cutting2

• Dubins-Spanier (1961) “moving-knife procedure”: FSG for |N| > 2

• Selfridge-Conway (1961): E-F for |N| = 3 with 9 cuts

• Brams-Taylor (1995): E-F for |N| > 3 with unbounded number of

cuts

• bounded E-F protocols: |N| = 4 Brams-Taylor-Zwicker (1997),

|N| = 5 Saberi-Wang (2009)

• Aziz-Mackenzie (2016): bounded E-F procedure with “at most”

nn
nn

nn

cuts

• Computer scientists in last 10 years: complexity of cake-cutting

(minimal number of cuts & queries)

2Procaccia, Ariel D. Cake cutting: not just child’s play. Communications of the ACM

56.7 (2013): 78-87.
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• Aziz-Mackenzie (2016): bounded E-F procedure with “at most”
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nn

cuts

• Computer scientists in last 10 years: complexity of cake-cutting

(minimal number of cuts & queries)

Criticism of cake-cutting

• Not much realistic. Instead of a “cake” we usually have a family of

private goods

• Economists: Most of the results are focused on fairness without

efficiency

2Procaccia, Ariel D. Cake cutting: not just child’s play. Communications of the ACM

56.7 (2013): 78-87.
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Efficiency. Microeconomists
divide divisible private goods

12



Features:

• Fairness is combined with efficiency

• The model becomes more realistic

• Examples: inheritance, common property between partners, seats in

overdemanded courses, etc

• Wait... Usually the goods are indivisible!

Lifehack: what is 0.3 of a bicycle?

• randomization: getting the bicycle with probability 0.3

• time-sharing: using bicycle 30% of time

13
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The model

• A finite set of divisible goods G = {a, b, c , ..}, each in the unit

amount, is to be allocated to agents, N = {1, 2, 3.., n} without

money transfers

• zi = (zia, zib, zic ..) ∈ RG
+ is a bundle of goods received by agent i

• an allocation z = (zi )i∈N is a collection of bundles zi ∈ RG
+ of all

agents with the condition that all goods are distributed:

∀g ∈ G
∑

i∈N zig = 1

• Preferences are given by utility functions: ui (zi ) is agent i ’s utility

• Classic approach: mild assumptions on ui , e.g., general

Arrow-Debreu domain of preferences
• Algo GT approach: ui has to be easy to formulate and to report,

e.g.,

• additive utilities (no complementarities): ui (zi ) =
∑

g∈G uig zig
• Leontief (maximal complementarity): ui (zi ) = ming∈G uig zig
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• Classic approach: mild assumptions on ui , e.g., general

Arrow-Debreu domain of preferences
• Algo GT approach: ui has to be easy to formulate and to report,

e.g.,
• additive utilities (no complementarities): ui (zi ) =

∑
g∈G uig zig

• Leontief (maximal complementarity): ui (zi ) = ming∈G uig zig

We assume additive utilities and normalization:
∑

g∈G uig = 1 (or 100

or 1000 like on Spliddit)
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The objectives

• Fairness: Envy-Freeness versus Fair Share Guaranteed:

ui (zi ) ≥ ui (zj) ∀i , j ∈ N versus ui (zi ) ≥
1

|N|

• Efficiency (Pareto-optimality): An allocation z is Efficient iff

there is no allocation z ′ weakly preferred by all agents and by at

least one strictly.

15
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The objectives

• Fairness: Envy-Freeness versus Fair Share Guaranteed:

ui (zi ) ≥ ui (zj) ∀i , j ∈ N versus ui (zi ) ≥
1

|N|

• Efficiency (Pareto-optimality): An allocation z is Efficient iff

there is no allocation z ′ weakly preferred by all agents and by at

least one strictly.

Question: Is fairness compatible with efficiency? We will see soon.
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Example: the Utilitarian rule

z :
∑
i∈N

ui (zi )→ max

Efficient but very unfair. Example:

sangria spritz wine

uAlice : 80 10 10

uBob : 10 80 10

uClaire : 10 10 80

uDave : 33 33 34

=⇒

sangria spritz wine

zAlice : 1 0 0

zBob : 0 1 0

zClaire : 0 0 1

zDave : 0 0 0

Flexible agents may get nothing!

16



Example: the Egalitarian rule

z : min
i∈N

ui (zi )→ max

• introduced by Pazner and Schmeidler 3

Properties:

• Efficient (need leximin extension)

• FSG?

• E-F?

3Pazner, E. A., Schmeidler, D. (1978). Egalitarian equivalent allocations: A new

concept of economic equity. The Quarterly Journal of Economics, 92(4), 671-687.

17
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Example: the Egalitarian rule

z : min
i∈N

ui (zi )→ max

• introduced by Pazner and Schmeidler 3

Properties:

• Efficient (need leximin extension)

• FSG? Yes, because equal division (zig = 1
|N| ) is a feasible allocation.

• E-F? For |N| > 2, no. Example:

a b

uAlice : 6 6

uBob : 8 4

uClaire : 9 3

=⇒

a b

zAlice : 0 18
23

zBob : 11
23

5
23

zClaire : 12
23 0

, Claire envies Bob.

3Pazner, E. A., Schmeidler, D. (1978). Egalitarian equivalent allocations: A new

concept of economic equity. The Quarterly Journal of Economics, 92(4), 671-687.
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Example: the Nash rule aka MaxNashProduct

A compromise between Utilitarian and Egalitarian approaches:

z : N (z) =
∏
i∈N

ui (zi )→ max

a similar rule was introduced by J. Nash in the context of axiomatic

bargaining4

Properties:

• Efficiency

• FSG? Yes!

• Envy-Freeness? Yes!

• A convex optimization problem ⇒ uniqueness, robustness, can be

approximately computed by standard gradient methods, or exactly

using primal-dual algorithms
4Nash, John (1950). The Bargaining Problem. Econometrica. 18(2): 155–162.

JSTOR 1907266

18



Example: the Nash rule aka MaxNashProduct

A compromise between Utilitarian and Egalitarian approaches:

z : N (z) =
∏
i∈N

ui (zi )→ max

a similar rule was introduced by J. Nash in the context of axiomatic

bargaining4

Properties:

• Efficiency

• FSG? Yes!

• Envy-Freeness? Yes!

• A convex optimization problem ⇒ uniqueness, robustness, can be

approximately computed by standard gradient methods, or exactly

using primal-dual algorithms
4Nash, John (1950). The Bargaining Problem. Econometrica. 18(2): 155–162.

JSTOR 1907266

18



Example: the Nash rule aka MaxNashProduct

A compromise between Utilitarian and Egalitarian approaches:

z : N (z) =
∏
i∈N

ui (zi )→ max

a similar rule was introduced by J. Nash in the context of axiomatic

bargaining4

Properties:

• Efficiency

• FSG? Yes!

• Envy-Freeness? Yes!

• A convex optimization problem ⇒ uniqueness, robustness, can be

approximately computed by standard gradient methods, or exactly

using primal-dual algorithms
4Nash, John (1950). The Bargaining Problem. Econometrica. 18(2): 155–162.

JSTOR 1907266

18



Example: the Nash rule aka MaxNashProduct

A compromise between Utilitarian and Egalitarian approaches:

z : N (z) =
∏
i∈N

ui (zi )→ max

a similar rule was introduced by J. Nash in the context of axiomatic

bargaining4

Properties:

• Efficiency

• FSG? Yes!

• Envy-Freeness? Yes!

• A convex optimization problem ⇒ uniqueness, robustness, can be

approximately computed by standard gradient methods, or exactly

using primal-dual algorithms
4Nash, John (1950). The Bargaining Problem. Econometrica. 18(2): 155–162.

JSTOR 1907266

18



Example: the Nash rule aka MaxNashProduct

A compromise between Utilitarian and Egalitarian approaches:

z : N (z) =
∏
i∈N

ui (zi )→ max

Properties:
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• FSG? Yes!
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Proof: For a maximizer z and a pair of agents i , j consider z(ε)

where zi (ε) = zi + εzj and zj(ε) = (1− ε)zj . Therefore

logN (z) ≥ logN (z(ε)) and

∂ logN (z(ε))

∂ε
≤ 0⇔ ui (zj)

ui (zi )
− 1 ≤ 0⇔ ui (zi ) ≥ ui (zj).
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z : N (z) =
∏
i∈N

ui (zi )→ max

Properties:

• Efficiency

• FSG? Yes!

• Envy-Freeness? Yes!

• A convex optimization problem ⇒ uniqueness, robustness, can be

approximately computed by standard gradient methods, or exactly

using primal-dual algorithms4.

4Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. V. (Eds.). (2007). Algorithmic

game theory (Vol. 1). Cambridge: Cambridge University Press. Chapters 5,6

18



Example: the Nash rule aka MaxNashProduct

A compromise between Utilitarian and Egalitarian approaches:

z : N (z) =
∏
i∈N

ui (zi )→ max

Properties:

• Efficiency

• FSG? Yes!

• Envy-Freeness? Yes!

• A convex optimization problem ⇒ uniqueness, robustness, can be

approximately computed by standard gradient methods, or exactly

using primal-dual algorithms

There are many confirmations that the Nash rule is the best rule to

divide goods under additive utilities. Why is the Nash product so

specific?

18



The Competitive Approach

19



Envy-freeness as equal choice opportunities

Fairness as equal choice opportunities

Carol likes candies and Bob likes beer; each of them spends 100 euros

in a supermarket on their favorite products. Will they envy each other?

No, because both select the best bundle of goods from the same choice

set (their budget set).
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Fairness as equal choice opportunities

Carol likes candies and Bob likes beer; each of them spends 100 euros

in a supermarket on their favorite products. Will they envy each other?

No, because both select the best bundle of goods from the same choice

set (their budget set).

Microeconomists combined this observation with theory of General

Equilibrium ⇒ the Competitive Equilibrium with Equal Incomes4 (choice

set = budget set)

Remark: equal-opportunity approach can be extended beyond budget

sets and fair-division applications.5

4Varian, H. R. (1974). Equity, envy, and efficiency. Journal of economic theory, 9(1),

63-91.
5Richter, Michael, and Ariel Rubinstein. Normative Equilibrium: The permissible and

the forbidden as devices for bringing order to economic environments. Working paper,

2018
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The Competitive Equilibrium with Equal Incomes (CEEI)

Informal definition:

• give every agent a unit amount of “virtual” money

• select prices s.t. the “demand” equalizes “supply”: when each agent

buys the best bundle he/she can afford, all items are sold and all

money spent.

aka Competitive Rule, Pseudo-Market mechanism, Equilibrium of the

Fisher Market, or Kelly’s proportional fairness.

The resulting allocation is

• envy-free ⇐= equal choice opportunities

• efficient ⇐= “invisible hand” of Adam Smith (1st fundamental

theorem of Welfare Economics)

This holds in a very general setup (for Arrow-Debreu preferences).
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The Competitive Equilibrium with Equal Incomes (CEEI)

Formal definition

z is a competitive allocation if there is a vector of prices p ∈ RG
+ such

that for any agent i ∈ N

zi maximizes ui over the budget set {y ∈ RG
+ : 〈y , p〉 ≤ 1}.

Properties: Envy-Freeness & Efficiency, Existence (non-constructive

fixed-point arguments based on the Kakutani theorem), but...
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The Competitive Equilibrium with Equal Incomes (CEEI)

Formal definition

z is a competitive allocation if there is a vector of prices p ∈ RG
+ such

that for any agent i ∈ N

zi maximizes ui over the budget set {y ∈ RG
+ : 〈y , p〉 ≤ 1}.

Properties: Envy-Freeness & Efficiency, Existence (non-constructive

fixed-point arguments based on the Kakutani theorem), but...

Theorem (Eisenberg (1961), Gale (1960))

For homogeneous utilities (i.e. ui (λy) = λui (y), ∀λ > 0, e.g, additive

or Leontief) CEEI coincides with the Nash rule.
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Chipman’s6,7 proof of Eisenberg-Gale theorem

First check that competitive z with price vector p maximizes N :

• zi maximizes ui (yi ) over bundles yi ∈ RG
+ with price 〈yi , p〉 = 1 =⇒

z ∈ argmax
y = (yi )i∈N :

yi ∈ RG
+

〈yi , p〉 = 1

∏
i∈N

ui (yi )

[
no feasibility constraint

∑
i

yi = 1!

]

6J. S. Chipman. 1974. Homothetic preferences and aggregation, Journal of Economic

Theory, 8, 26-38.
7For additive utilities there is a straightforward proof using FOC. See Nisan, N.,

Roughgarden, T., Tardos, E., Vazirani, V. V. (Eds.). (2007). Algorithmic game theory

(Vol. 1). Cambridge: Cambridge University Press. Chapter 5
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yi ∈ RG
+

〈yi , p〉 = 1

∏
i∈N

ui (yi )

[
no feasibility constraint

∑
i

yi = 1!

]

• Instead of 〈yi , p〉 = 1 for all i , we can write “aggregate budget

constraint” 〈
∑

i∈N yi , p〉 = |N|. Follows from budget equalizing

trick: if a maximizer y = (yi )i∈N has unequal budgets bi = 〈yi , p〉,
then by defining y ′

i = yi
bi

we increase the product. Indeed∏
i∈N

1

bi
≥ 1 for

∑
i∈N

bi = |N|.

• The set
{
y = (yi )i∈N : yi ∈ RG

+, 〈
∑

i∈N yi , p〉 = |N|
}

contains all

feasible allocations. Thus z maximizes N over feasible allocations.
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i∈N yi , p〉 = |N|. Follows from budget equalizing
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then by defining y ′

i = yi
bi

we increase the product. Indeed∏
i∈N

1
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≥ 1 for

∑
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bi = |N|.

• The set
{
y = (yi )i∈N : yi ∈ RG
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∑

i∈N yi , p〉 = |N|
}

contains all

feasible allocations. Thus z maximizes N over feasible allocations.

By uniqueness of N -maximizers, any maximizer is competitive. 23



What if we divide bads, not
goods?6

6based on

Anna Bogomolnaia, Hervé Moulin, Fedor Sandomirskiy, Elena Yanovskaya

“Competitive division of a mixed manna”, Econometrica. 2017. V.85:6. P.1847-1871

“Dividing goods or bads under additive utilities”, SocChoice&Welfare . 2018. P. 1-23

“Dividing goods and bads under additive utilities” arXiv:1610.03745 [cs.GT]
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Motivation

• Most of the results in fair division are about goods

• Exception: F. Su. (2002, 2009), burnt cake cutting

• But many real problems involve bads

• e.g., house chores, teaching loads, noxious facilities

• Or goods and bads at the same time

25



Why goods 6= bads? Turning bads into goods.

Bads instead of goods: uib ≤ 0 for all agents and items.

Toy example

• 4 agents divide 1 hour of painful work b

• introduce auxiliary good “not doing b”

• we have 3 hours of “not doing b” to distribute, but no agent can

consume more than one hour.

Corollary: A problem with bads can be reduced to a constrained

problem with goods.

26



Why goods 6= bads? Extension of the Nash rule to bads, failed

attempts

Ideas:

• Minimize the product of disutilities N (z) =
∏

i∈N |ui (zi )|
Very unfair: picks an allocation with N (z) = 0 that gives no bads to

one of agents

• Maximize the product of disutilities

Inefficient: is dominated by equal division zib = 1
|N|
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Why goods 6= bads? Extension of the Nash rule to bads, failed

attempts

Ideas:

• Minimize the product of disutilities N (z) =
∏

i∈N |ui (zi )|
Very unfair: picks an allocation with N (z) = 0 that gives no bads to

one of agents

• Maximize the product of disutilities

Inefficient: is dominated by equal division zib = 1
|N|

To extend the Nash rule to bads we need its connection to the CEEI

27



CEEI for a mixture of divisible goods & bads

• We assume that utilities are homogeneous (e.g., additive, Leontief)

How to define CEEI?

• Allow prices and budgets of both signs.

Competitive allocations exist (follows from Mas-Colell, 1982), are

envy-free and efficient.

28



Analog of Eisenberg-Gale theorem

Geometry of CEEI for bads

CEEI are critical points (local minima, local maxima, and saddle points)

of the Nash product on the efficient frontier.
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Feasible set and competitive allocations
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Thus finding critical points is not a convex optimization problem7.

The result extends to mixture of goods and bads. The proof is based

on an extension of Chipman’s demand-aggregation ideas (difficulty:

cannot use uniqueness anymore).

7Branzei, Sandomirskiy (2019) “Competitive division of chores” show that for fixed

N, still all competitive allocations can be computed in polynomial time 29



New issue: multiplicity

• There are problems with exponential number of CEEI if |N| (the

number of agents) � |G | (the number of items)

• Multiplicity ⇒ additional negotiations what outcome to chose ⇒
need to find a good single-valued selection

• There are no continuous selections & there are no other

single-valued, efficient, and envy-free division rules that are

continuous.
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Multiplicity disappears for typical large problems

• uib are i.i.d. random variables uniformly distributed on [− 1
m , 0].

Proposition

Two agents divide m bads, m→∞. Fix ε > 0. Utility vectors of all

competitive allocations are concentrated in ε-neighborhood of(
− 1

3 ,−
1
3

)
with probability pm → 1.

Feasible set and competitive allocations
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utility of agent 1
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-1
0-0.2-0.4-0.6-0.8-1

Example with 15 bads.
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Summary

• Modern approach to fair division inspired by computer scientists:

narrow preference domain, focus on positive results implementable in

practice

• CEEI

• CEEI provides a general methodology to design fair and efficient rules

• CEEI is defined implicitly ⇒ non-transparent and leads to

algorithmic difficulties

• Difficulties disappear for goods under homogeneous utilities:

CEEI=MaxNashProduct ⇒ uniqueness and convexity of optimization

problem

• Bads6=goods: multiplicity of CEEI ⇒ algorithmic difficulties, the

question of choosing a single-valued selection

• Connection to the Nash product is useful when looking for an

extension of CEEI to new classes of problems. For indivisibilities,

depending on the language (Nash product or CEEI) one gets

different extensions but this is from the lecture of Vasilis.
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What to read?
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Surveys:

• Economist’s view on the current trends in fair-division:

Herve Moulin Fair Division in the Internet Age. Annual Review of

Economics 11 (2019).

• Classic microeconomic approach to fair-division:

William Thomson “Fair Allocation Rules” Working Paper No. 539,

Rochester University, December 2007

• Computer-scientist’s view on cake-division:

Procaccia, Ariel D. Cake cutting: not just child’s play.

Communications of the ACM 56.7 (2013): 78-87.
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Big books:

• Algorithmic Game Theory and Computational Social Choice

(with chapters on fair division):

Brandt, F., Conitzer, V., Endriss, U., Procaccia, A. D., & Lang, J.

(Eds.). (2016). Handbook of computational social choice.

Cambridge University Press.

Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. V. (Eds.).

(2007). Algorithmic game theory (Vol. 1). Cambridge: Cambridge

University Press.

• Classic economic book:

Heeve Moulin Fair division and collective welfare. – MIT press, 2004.

• Introductory level (game theory, mechanism design including

FD):

Karlin, Anna R., and Yuval Peres. Game theory, alive. Vol. 101.

American Mathematical Soc., 2017.

Shoham, Y., & Leyton-Brown, K. (2008). Multiagent systems:

Algorithmic, game-theoretic, and logical foundations. Cambridge

University Press.
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